Development of Alternative Glass Ceramic Seal for a Planar Solid Oxide Fuel Cell
Author(s) -
Priscila Lemes Rachadel,
Hansu Birol,
Antônio Pedro Novaes de Oliveira,
Dachamir Hotza
Publication year - 2012
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2012/346280
Subject(s) - materials science , crystallization , composite material , ceramic , shrinkage , solid oxide fuel cell , relative density , porosity , slurry , microstructure , seal (emblem) , oxide , layer (electronics) , metallurgy , chemical engineering , art , visual arts , chemistry , electrode , anode , engineering
LZSA glass ceramic (LiO2-ZrO2-SiO2-Al2O3) was tested for its thermomechanical compatibility as a sealing material with a stainless steel interconnect (AISI 430) of a planar SOFC. With this purpose, the densification and crystallization behavior of LZSA were investigated initially. It was observed that the material reached maximum relative density and shrinkage, respectively 95% and 17%, at 800°C, which corresponded approximately to the crystallization temperature of the material as evidenced by DTA analysis. In the next step, LZSA tapes were cast from slurries and prepared either as LZSA laminates or LZSA-steel bilayers. The densification behavior and microstructural features of cofired LZSA laminates and LZSA-steel bilayers were analyzed at 800 and 900°C. Maximum relative density and defect-free interfaces were observed for laminates and bi-layers cofired at 800°C, whereas increased porosity and detached bi-layer were the characteristics of the samples fired at 900°C
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom