In with the Old, in with the New: The Promiscuity of the Duplication Process Engenders Diverse Pathways for Novel Gene Creation
Author(s) -
Vaishali Katju
Publication year - 2012
Publication title -
international journal of evolutionary biology
Language(s) - English
Resource type - Journals
eISSN - 2090-8032
pISSN - 2090-052X
DOI - 10.1155/2012/341932
Subject(s) - gene duplication , promiscuity , process (computing) , gene , computational biology , biology , evolutionary biology , genetics , computer science , ecology , operating system
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size ( N e ) of a species may influence the probability of emergence of genes with radically altered functions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom