I-PD Controller Tuning for Unstable System Using Bacterial Foraging Algorithm: A Study Based on Various Error Criterion
Author(s) -
V. Rajinikanth,
K. Latha
Publication year - 2012
Publication title -
applied computational intelligence and soft computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 10
eISSN - 1687-9732
pISSN - 1687-9724
DOI - 10.1155/2012/329389
Subject(s) - setpoint , computer science , mean squared error , approximation error , tracking error , controller (irrigation) , control theory (sociology) , process (computing) , mean absolute error , algorithm , mathematics , control (management) , artificial intelligence , statistics , agronomy , biology , operating system
This paper proposes a novel method to tune the I-PD controller structure for the time-delayed unstable process (TDUP) using Bacterial Foraging Optimization (BFO) algorithm. The tuning process is focussed to search the optimal controller parameters (, , ) by minimising the multiple objective performance criterion. A comparative study on various cost functions like Integral of Squared Error (ISE), Integral of Absolute Error (IAE), Integral of Time-weighted Squared Error (ITSE), and Integral of Time weighted Absolute Error (ITAE) have been attempted for a class of TDUP. A simulation study for BFO-based I-PD tuning has been done to validate the performance of the proposed method. The results show that the tuning approach is a model independent approach and provides enhanced performance for the setpoint tracking with improved time domain specifications
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom