Orthogonal Genetic Algorithm for Planar Thinned Array Designs
Author(s) -
Li Zhang,
YongChang Jiao,
Bo Chen,
Hong Li
Publication year - 2012
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2012/319037
Subject(s) - crossover , orthogonal array , planar array , planar , genetic algorithm , algorithm , computer science , mathematics , mathematical optimization , taguchi methods , artificial intelligence , telecommunications , computer graphics (images) , machine learning
An orthogonal genetic algorithm (OGA) is applied to optimize the planar thinned array with a minimum peak sidelobe level. The method is a genetic algorithm based on orthogonal design. A crossover operator formed by the orthogonal array and the factor analysis is employed to enhance the genetic algorithm for optimization. In order to evaluate the performance of the OGA, 20×10-element planar thinned arrays have been designed to minimize peak sidelobe level. The optimization results by the OGA are better than the previously published results
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom