In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives
Author(s) -
Anil Kumar,
Utpal Bora
Publication year - 2012
Publication title -
international journal of medicinal chemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-2069
pISSN - 2090-2077
DOI - 10.1155/2012/316972
Subject(s) - ap 1 transcription factor , curcumin , in silico , transcription factor , activator (genetics) , chemistry , binding site , dna , biology , biochemistry , microbiology and biotechnology , cancer research , gene
Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5′-TGAG/CTCA-3′ (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom