z-logo
open-access-imgOpen Access
A Two-Piece Derivative of a Group I Intron RNA as a Platform for Designing Self-Assembling RNA Templates to Promote Peptide Ligation
Author(s) -
Takahiro Tanaka,
Hiroyuki Furuta,
Yoshiya Ikawa
Publication year - 2012
Publication title -
journal of nucleic acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.621
H-Index - 32
eISSN - 2090-021X
pISSN - 2090-0201
DOI - 10.1155/2012/305867
Subject(s) - rna , template , ribozyme , intron , computational biology , ribosomal rna , tetrahymena , chemical ligation , peptide , biology , nanotechnology , biochemistry , materials science , gene
Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA) as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom