Cusp Forms in and the Number of Representations of Positive Integers by Some Direct Sum of Binary Quadratic Forms with Discriminant
Author(s) -
Barış Kendirli
Publication year - 2012
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2012/303492
Subject(s) - mathematics , discriminant , binary quadratic form , cusp (singularity) , quadratic equation , binary number , combinatorics , basis (linear algebra) , isotropic quadratic form , cusp form , quadratic form (statistics) , discrete mathematics , arithmetic , quadratic function , artificial intelligence , geometry , computer science
A basis of 4(Γ0(47)) is given and the formulas for the number of representationsof positive integers by some direct sum of the quadratic forms 21+12+1222, 221±12+622, 321±12+422 are determined
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom