z-logo
open-access-imgOpen Access
Self-Optimization of Pilot Power in Enterprise Femtocells Using Multi objective Heuristic
Author(s) -
Lina Mohjazi,
Mahmoud AlQutayri,
Hassan Barada,
Kin Fai Poon,
Raed M. Shubair
Publication year - 2012
Publication title -
journal of computer networks and communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 23
eISSN - 2090-715X
pISSN - 2090-7141
DOI - 10.1155/2012/303465
Subject(s) - femtocell , computer science , umts frequency bands , telecommunications link , heuristic , genetic algorithm , power (physics) , mathematical optimization , computer network , base station , artificial intelligence , mathematics , physics , quantum mechanics , machine learning
Deployment of a large number of femtocells to jointly provide coverage in an enterprise environment raises critical challenges especially in future self-organizing networks which rely on plug-and-play techniques for configuration. This paper proposes a multi-objective heuristic based on a genetic algorithm for a centralized self-optimizing network containing a group of UMTS femtocells. In order to optimize the network coverage in terms of handled load, coverage gaps, and overlaps, the algorithm provides a dynamic update of the downlink pilot powers of the deployed femtocells. The results demonstrate that the algorithm can effectively optimize the coverage based on the current statistics of the global traffic distribution and the levels of interference between neighboring femtocells. The algorithm was also compared with the fixed pilot power scheme. The results show over fifty percent reduction in pilot power pollution and a significant enhancement in network performance. Finally, for a given traffic distribution, the solution quality and the efficiency of the described algorithm were evaluated by comparing the results generated by an exhaustive search with the same pilot power configuration

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom