Infinitely Many Homoclinic Orbits for 2nth-Order Nonlinear Functional Difference Equations Involving thep-Laplacian
Author(s) -
Xiaofei He
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/297618
Subject(s) - algorithm , computer science
By establishing a new proper variational framework and using the critical pointtheory, we establish some new existence criteria to guarantee that the 2nth-order nonlinear difference equation containing both advance and retardation with p-Laplacian Δn(r(t−n)φp(Δnu(t−1)))+q(t)φp(u(t))=f(t,u(t+n),…,u(t),…,u(t−n)), n∈ℤ(3), t∈ℤ, has infinitely many homoclinic orbits, where φp(s) is p-Laplacian operator; φp(s)=|s|p−2s(1
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom