Staurosporine Inhibits Frequency-Dependent Myofilament Desensitization in Intact Rabbit Cardiac Trabeculae
Author(s) -
Kenneth D. Varian,
Brandon J. Biesiadecki,
Mark T. Ziolo,
Jonathan P. Davis,
Paul M.L. Janssen
Publication year - 2012
Publication title -
biochemistry research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.631
H-Index - 36
eISSN - 2090-2255
pISSN - 2090-2247
DOI - 10.1155/2012/290971
Subject(s) - staurosporine , calcium , chemistry , protein kinase c , medicine , kinase , biochemistry
Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM), a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO) was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa 50 of the force-calcium relationship was significant from 6.05 ± 0.04 at 1 Hz versus 5.88 ± 0.06 at 4 Hz under control conditions (vehicle, P < 0.001) but not in presence of staurosporine (5.89 ± 0.08 at 1 Hz versus 5.94 ± 0.07 at 4 Hz, P = NS). Phosphoprotein analysis (Pro-Q Diamond stain) confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom