z-logo
open-access-imgOpen Access
Pollinator-Driven Speciation in Sexually Deceptive Orchids
Author(s) -
Shuqing Xu,
Philipp M. Schlüter,
Florian P. Schiestl
Publication year - 2012
Publication title -
international journal of ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.373
H-Index - 20
eISSN - 1687-9716
pISSN - 1687-9708
DOI - 10.1155/2012/285081
Subject(s) - pollinator , biology , reproductive isolation , sympatry , genetic algorithm , pollination , ecological speciation , sympatric speciation , evolutionary biology , mimicry , ecology , sexual selection , mating , orchidaceae , gene flow , population , pollen , genetic variation , genetics , gene , demography , sociology
Pollinator-mediated selection has been suggested to play a major role for the origin and maintenance of the species diversity in orchids. Sexually deceptive orchids are one of the prime examples for rapid, pollinator-mediated plant radiations, with many species showing little genetic differentiation, lack of postzygotic barriers, but strong prezygotic reproductive isolation. These orchids mimic mating signals of female insects and employ male insects as pollinators. This kind of sexual mimicry leads to highly specialised pollination and provides a good system for investigating the process of pollinator-driven speciation. Here, we summarise the knowledge of key processes of speciation in this group of orchids and conduct a meta-analysis on traits that contribute to species differentiation, and thus potentially to speciation. Our study suggests that pollinator shift through changes in floral scent is predominant among closely related species in sexually deceptive orchids. Such shifts can provide a mechanism for pollinator-driven speciation in plants, if the resulting floral isolation is strong. Furthermore, changes in floral scent in these orchids are likely controlled by few genes. Together these factors suggest speciation in sexually deceptive orchids may happen rapidly and even in sympatry, which may explain the remarkable species diversity observed in this plant group

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom