z-logo
open-access-imgOpen Access
Histocompatibility and Hematopoietic Transplantation in the Zebrafish
Author(s) -
Jill L. O. de Jong,
Leonard I. Zon
Publication year - 2012
Publication title -
advances in hematology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 31
eISSN - 1687-9112
pISSN - 1687-9104
DOI - 10.1155/2012/282318
Subject(s) - zebrafish , haematopoiesis , transplantation , model organism , major histocompatibility complex , immunology , hematopoietic stem cell transplantation , biology , stem cell , cord blood , medicine , gene , genetics , antigen
The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs) are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC) genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom