z-logo
open-access-imgOpen Access
Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images
Author(s) -
Meiyan Huang,
Wei Yang,
Mei Yu,
Zhentai Lu,
Qianjin Feng,
Wufan Chen
Publication year - 2012
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2012/280538
Subject(s) - artificial intelligence , computer science , pattern recognition (psychology) , metric (unit) , contrast (vision) , image retrieval , similarity (geometry) , sagittal plane , semantic gap , brain tumor , content based image retrieval , visual word , computer vision , image (mathematics) , medicine , pathology , radiology , operations management , economics
A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom