Adaptive Control for Nonlinear Systems with Time-Varying Control Gain
Author(s) -
Alejandro Rincón,
Fabiola Angulo
Publication year - 2012
Publication title -
journal of control science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 18
eISSN - 1687-5257
pISSN - 1687-5249
DOI - 10.1155/2012/269346
Subject(s) - control theory (sociology) , bounded function , robustness (evolution) , nonlinear system , adaptive control , mathematics , robust control , scheme (mathematics) , control (management) , computer science , control engineering , engineering , artificial intelligence , mathematical analysis , biochemistry , chemistry , physics , quantum mechanics , gene
We propose a scheme for nonlinear plants with time-varying control gain and time-varying plant coefficients, on the basis of a plant model consisting of a Brunovsky-type model with polynomials as approximators. We develop an adaptive robust control scheme for this plant, under the following assumptions: (i) the plant terms involve time-varying but bounded coefficients, being its upper bound unknown; (ii) the control gain is unknown, not necessarily bounded, and only its signum is known. To achieve robustness, we use a combination of robustifying control inputs and dead zone-type update laws. We apply this methodology to the speed control of a permanent magnet synchronous motor (PMSM), and we achieve proper tracking results
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom