z-logo
open-access-imgOpen Access
Oxygen Absorption into Stirred Emulsions of n-Alkanes
Author(s) -
Thanh Hai Ngo,
Adrian Schumpe
Publication year - 2012
Publication title -
international journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 25
eISSN - 1687-8078
pISSN - 1687-806X
DOI - 10.1155/2012/265603
Subject(s) - heptane , dodecane , hexadecane , volume fraction , mass fraction , isothermal process , chemistry , volume (thermodynamics) , analytical chemistry (journal) , absorption (acoustics) , isochoric process , fraction (chemistry) , bubble , aqueous solution , oxygen , materials science , chromatography , thermodynamics , nuclear chemistry , organic chemistry , physics , parallel computing , computer science , composite material
Absorption of pure oxygen into aqueous emulsions of n-heptane, n-dodecane, and n-hexadecane, respectively, has been studied at 0 to 100% oil volume fraction in a stirred tank at the stirring speed of 1000 min−1. The volumetric mass transfer coefficient, , was evaluated from the pressure decrease under isochoric and isothermal (298.2 K) conditions. The O/W emulsions of both n-dodecane and n-hexadecane show a maximum at 1-2% oil fraction as reported in several previous studies. Much stronger effects never reported before were observed at high oil fractions. Particularly, all n-heptane emulsions showed higher mass-transfer coefficients than both of the pure phases. The increase is by upto a factor of 38 as compared to pure water at 50% n-heptane. The effect is tentatively interpreted by oil spreading on the bubble surface enabled by a high spreading coefficient. In W/O emulsions of n-heptane and n-dodecane increases with the dispersed water volume fraction; the reason for this surprising trend is not clear.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom