Paraoxonase Activity and Expression Is Modulated by Therapeutics in Experimental Rat Nonalcoholic Fatty Liver Disease
Author(s) -
O. Hussein,
Jamal Zidan,
Kamal Abu Jabal,
Imad Shams,
Sergio Szvalb,
M. Grozovski,
I. Bersudsky,
Rachel Karry,
Michael Aviram
Publication year - 2012
Publication title -
international journal of hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.734
H-Index - 14
eISSN - 2090-3448
pISSN - 2090-3456
DOI - 10.1155/2012/265305
Subject(s) - nonalcoholic fatty liver disease , medicine , paraoxonase , disease , fatty liver , bioinformatics , oxidative stress , biology
Objective . The objective of the present study is to investigate the effect of rosiglitazone, metformin, ezetimibe, and valsartan (alone or in combinations) on paraoxonase (PON) activity and PON-mRNA expression in nonalcoholic fatty liver disease (NAFLD). Methods . 54 Male Sprague–Dawley rats were divided to 9 groups: chow diet group (15 weeks); methionine-choline-deficient diet (MCDD) group (15 weeks); MCDD-treated groups for the last 6 weeks with either metformin (M), rosiglitazone (R), metformin plus rosiglitazone (M+R), ezetimibe (E), valsartan (V), or a combination of R+M+V or of R+M+V+E for a total period of 15 weeks. Results . PON activities in serum and liver were decreased in MCDD rats. PON activity in serum increased significantly in all treatment groups. PON activity in liver was also increased significantly, except only in groups R, E, V, R+M+V, and R+M+V+E. Liver PON3 mRNA expression increased significantly in groups R+M, E, V, R+M+V, and R+M+V+E whereas liver PON2 mRNA expression increased significantly in MCDD, R+M, E, V, R+M+V, and R+M+V+E. Conclusions . PON activities in serum and liver were decreased in NAFLD. Treatment with insulin sensitizers, ezetimibe, and valsartan increased PON activity and reduced oxidative stress both in serum and liver.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom