z-logo
open-access-imgOpen Access
Occurrence and Impact of Minor Histocompatibility Antigens' Disparities on Outcomes of Hematopoietic Stem Cell Transplantation from HLA-Matched Sibling Donors
Author(s) -
Monika DzierżakMietła,
Mirosław Markiewicz,
Urszula Siekiera,
Sylwia Mizia,
Anna Koclęga,
Patrycja Zielińska,
Małgorzata SobczykKruszelnicka,
Sławomira KyrczKrzemień
Publication year - 2012
Publication title -
bone marrow research
Language(s) - English
Resource type - Journals
eISSN - 2090-2999
pISSN - 2090-3006
DOI - 10.1155/2012/257086
Subject(s) - minor histocompatibility antigen , medicine , sibling , histocompatibility , transplantation , human leukocyte antigen , immunology , hematopoietic stem cell transplantation , stem cell , antigen , major histocompatibility complex , genetics , biology , psychology , developmental psychology
We have examined the alleles of eleven minor histocompatibility antigens (MiHAs) and investigated the occurrence of immunogenic MiHA disparities in 62 recipients of allogeneic hematopoietic cell transplantation (allo-HCT) with myeloablative conditioning performed between 2000 and 2008 and in their HLA-matched sibling donors. Immunogenic MiHA mismatches were detected in 42 donor-recipient pairs: in 29% MiHA was mismatched in HVG direction, in another 29% in GVH direction; bidirectional MiHA disparity was detected in 10% and no MiHA mismatches in 32%. Patients with GVH-directed HY mismatches had lower both overall survival and disease-free survival at 3 years than patients with compatible HY; also higher incidence of both severe acute GvHD and extensive chronic GVHD was observed in patients with GVH-directed HY mismatch. On contrary, GVH-directed mismatches of autosomally encoded MiHAs had no negative effect on overall survival. Results of our study help to understand why posttransplant courses of allo-HCT from siblings may vary despite the complete high-resolution HLA matching of a donor and a recipient.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom