z-logo
open-access-imgOpen Access
Ultrawideband Impulse Radar Through-the-Wall Imaging with Compressive Sensing
Author(s) -
Wenji Zhang,
Moeness G. Amin,
Fauzia Ahmad,
Ahmad Hoorfar,
Graeme E. Smith
Publication year - 2012
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2012/251497
Subject(s) - compressed sensing , radar , computer science , impulse (physics) , time domain , beamforming , nyquist rate , radar imaging , electronic engineering , sampling (signal processing) , algorithm , computer vision , engineering , telecommunications , physics , filter (signal processing) , quantum mechanics
Compressive Sensing (CS) provides a new perspective for addressing radar applications requiring large amount of measurements and long data acquisition time; both issues are inherent in through-the-wall radar imaging (TWRI). Most CS techniques applied to TWRI consider stepped-frequency radar platforms. In this paper, the impulse radar two-dimensional (2D) TWRI problem is cast within the framework of CS and solved by the sparse constraint optimization performed on time-domain samples. Instead of the direct sampling of the time domain signal at the Nyquist rate, the Random Modulation Preintegration architecture is employed for the CS projection measurement, which significantly reduces the amount of measurement data for TWRI. Numerical results for point-like and spatially extended targets show that high-quality reliable TWRI based on the CS imaging approach can be achieved with a number of data points with an order of magnitude less than that required by conventional beamforming using the entire data volume

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom