9T Full Adder Design in Subthreshold Region
Author(s) -
Shiwani Singh,
Tripti Sharma,
K. G. Sharma,
Bharat Singh
Publication year - 2012
Publication title -
vlsi design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.123
H-Index - 24
eISSN - 1065-514X
pISSN - 1026-7123
DOI - 10.1155/2012/248347
Subject(s) - adder , subthreshold conduction , power–delay product , computer science , electronic engineering , power (physics) , logic gate , transistor , electrical engineering , voltage , algorithm , engineering , cmos , physics , quantum mechanics
This paper presents prelayout simulations of two existing 9T and new proposed 9T full adder circuit in subthreshold region to employ in ultralow-power applications. The proposed circuit consists of a new logic which is used to implement Sum module. The proposed design remarkably reduces power-delay product (PDP) and improves temperature sustainability when compared with existing 9T adders. Therefore, in a nut shell proposed adder cell outperforms the existing adders in subthreshold region and proves to be a viable option for ultralow-power and energy-efficient applications. All simulations are performed on 45nm standard model on Tanner EDA tool version 13.0.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom