Upregulation of the Renin-Angiotensin-Aldosterone-Ouabain System in the Brain Is the Core Mechanism in the Genesis of All Types of Hypertension
Author(s) -
Hakuo Takahashi
Publication year - 2012
Publication title -
international journal of hypertension
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.744
H-Index - 37
eISSN - 2090-0392
pISSN - 2090-0384
DOI - 10.1155/2012/242786
Subject(s) - medicine , renin–angiotensin system , aldosterone , endocrinology , renovascular hypertension , blood pressure , sympathetic nervous system , pathophysiology of hypertension , essential hypertension , angiotensin ii , primary aldosteronism , hypothalamus
Basic research using animal models points to a causal role of the central nervous system in essential hypertension; however, since clinical research is technically difficult to perform, this connection has not been confirmed in humans. Recently, renal nerve ablation in humans proved to continuously decrease blood pressure in resistant hypertension. Furthermore, when electrical stimulation was continuously applied to the carotid baroreceptor nerve of human adults, their blood pressure lowered. These findings promoted the concept that the central nervous system may actually be involved in the pathogenesis of essential hypertension, which is closely associated with excess sodium intake. We have demonstrated that endogenous digitalis plays a key role in hypertension associated with excess sodium intake via sympathetic activation in rats. Increased sodium concentration inside the brain activates epithelial sodium channels and the renin-angiotensin-aldosterone system in the brain. Aldosterone releases ouabain from neurons in the paraventricular nucleus in the hypothalamus. Angiotensin II and aldosterone of peripheral origin reach the brain to augment sympathetic outflow. Collectively essential hypertension associated with excess sodium intake and obesity, renovascular hypertension, and primary aldosteronism and pseudoaldosteronism all seem to have a common cause originating from the central nervous system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom