z-logo
open-access-imgOpen Access
Configurable Transmitter and Systolic Channel Estimator Architectures for Data-Dependent Superimposed Training Communications Systems
Author(s) -
E. Romero-Aguirre,
R. Parra-Michel,
Roberto Carrasco-Alvarez,
A.G. Orozco-Lugo
Publication year - 2012
Publication title -
international journal of reconfigurable computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 16
eISSN - 1687-7209
pISSN - 1687-7195
DOI - 10.1155/2012/236372
Subject(s) - computer science , transmitter , estimator , field programmable gate array , quantization (signal processing) , virtex , channel (broadcasting) , computer hardware , verilog , qam , quadrature amplitude modulation , computer architecture , bit error rate , algorithm , telecommunications , mathematics , statistics
In this paper, a configurable superimposed training (ST)/data-dependent ST (DDST) transmitter and architecture based on array processors (APs) for DDST channel estimation are presented. Both architectures, designed under full-hardware paradigm, were described using Verilog HDL, targeted in Xilinx Virtex-5 and they were compared with existent approaches. The synthesis results showed a FPGA slice consumption of 1% for the transmitter and 3% for the estimator with 160 and 115 MHz operating frequencies, respectively. The signal-to-quantization-noise ratio (SQNR) performance of the transmitter is about 82 dB to support 4/16/64-QAM modulation. A Monte Carlo simulation demonstrates that the mean square error (MSE) of the channel estimator implemented in hardware is practically the same as the one obtained with the floating-point golden model. The high performance and reduced hardware of the proposed architectures lead to the conclusion that the DDST concept can be applied in current communications standards

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom