Role of HO/CO in the Control of Peripheral Circulation in Humans
Author(s) -
David Sacerdoti,
Despina Mania,
Paola Pesce,
S. Gaiani,
Angelo Gatta,
Massimo Bolognesi
Publication year - 2012
Publication title -
international journal of hypertension
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.744
H-Index - 37
eISSN - 2090-0392
pISSN - 2090-0384
DOI - 10.1155/2012/236180
Subject(s) - vasodilation , vasoconstriction , nitric oxide , medicine , nitric oxide synthase , laser doppler velocimetry , acetylcholine , pharmacology , perfusion , peripheral , anesthesia , blood flow , endocrinology
Experimental studies show that the heme oxygenase/carbon monoxide system (HO/CO) plays an important role in the homeostasis of circulation and in the pathophysiology of hypertension. No data are available on its role in the control of peripheral circulation in humans. We evaluated the effects of inhibition of HO with stannous mesoporphyrin IX (SnMP) (200 μ M) locally administered by iontophoresis, on human skin blood flow, evaluated by laser-Doppler flowmetry, in the presence and absence of nitric oxide synthase (NOS) inhibition with L-NG-Nitroarginine methyl ester (L-NAME) (100 μ M). We also evaluated the effect of HO inhibition on vasodilatation induced by acetylcholine (ACh) and vasoconstriction caused by noradrenaline (NA). SnMP and L-NAME caused a similar 20–25% decrease in skin flow. After nitric oxide (NO) inhibition with L-NAME, HO inhibition with SnMP caused a further 20% decrease in skin perfusion. SnMP decreased vasodilatation induced by ACh by about 70%, while it did not affect vasoconstriction to NA. In conclusion, HO/CO participates in the control of peripheral circulation, independently from NO, and is involved in vasodilatation to ACh.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom