A Brief Review on theIn SituSynthesis of Boron-Doped Diamond Thin Films
Author(s) -
Vadali V. S. S. Srikanth,
Sampath Kumar Puttapati,
Vijay Bhooshan Kumar
Publication year - 2011
Publication title -
international journal of electrochemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-3537
pISSN - 2090-3529
DOI - 10.1155/2012/218393
Subject(s) - diamond , thin film , boron , materials science , doping , material properties of diamond , carbon film , nanotechnology , chemical engineering , optoelectronics , chemistry , composite material , organic chemistry , engineering
Diamond thin films are well known for their unsurpassed physical and chemical properties. In the recent past, research interests in the synthesis of conductive diamond thin films, especially the boron-doped diamond (BDD) thin films, have risen up to cater to the requirements of electronic, biosensoric, and electrochemical applications. BDD thin films are obtained by substituting some of the sp3 hybridized carbon atoms in the diamond lattice with boron atoms. Depending on diamond thin film synthesis conditions, boron doping routes, and further processing steps (if any), different types of BDD diamond thin films with application-specific properties can be obtained. This paper will review several important advances in the synthesis of boron-doped diamond thin films, especially those synthesized via gas phase manipulation
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom