Raman Spectroscopy for Quantitative Analysis of Point Defects and Defect Clusters in Irradiated Graphite
Author(s) -
Keisuke Niwase
Publication year - 2012
Publication title -
international journal of spectroscopy
Language(s) - English
Resource type - Journals
eISSN - 1687-9457
pISSN - 1687-9449
DOI - 10.1155/2012/197609
Subject(s) - raman spectroscopy , irradiation , materials science , vacancy defect , crystallographic defect , highly oriented pyrolytic graphite , electron beam processing , graphite , amorphous solid , dislocation , spectroscopy , pyrolytic carbon , positron annihilation spectroscopy , analytical chemistry (journal) , molecular physics , electron , chemistry , crystallography , optics , positron , physics , organic chemistry , chromatography , quantum mechanics , pyrolysis , nuclear physics , composite material , positron annihilation
We report the development of Raman spectroscopy as a powerful tool for quantitative analysis of point defect and defect clusters in irradiated graphite. Highly oriented pyrolytic graphite (HOPG) was irradiated by 25 keV He+ and 20 keV D+ ions. Raman spectroscopy and transmission electron microscopy revealed a transformation of irradiated graphite into amorphous state. Annealing experiment indicated a close relation between Raman intensity ratio and vacancy concentration. The change of Raman spectra under irradiation was empirically analyzed by “disordered-region model,” which assumes the transformation from vacancy-contained region to disordered region. The model well explains the change of Raman spectra and predicts the critical dose of amorphization, but the nature of the disordered region is unclear. Then, we advanced the model into “dislocation accumulation model,” assigning the disordered region to dislocation dipole. Dislocation accumulation model can simulate the irradiation time dependencies of Raman intensity ratio and the c-axis expansion under irradiation, giving a relation between the absolute concentration of vacancy and Raman intensity ratio, suggesting an existence of the barrier on the mutual annihilation of vacancy and interstitial
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom