z-logo
open-access-imgOpen Access
Experimental Studies of Neural Network Control for One-Wheel Mobile Robot
Author(s) -
P. K. Kim,
Seul Jung
Publication year - 2012
Publication title -
journal of control science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 18
eISSN - 1687-5257
pISSN - 1687-5249
DOI - 10.1155/2012/194397
Subject(s) - actuator , artificial neural network , mobile robot , compensation (psychology) , control theory (sociology) , control engineering , robot , controller (irrigation) , computer science , engineering , control system , task (project management) , control (management) , artificial intelligence , psychology , agronomy , systems engineering , psychoanalysis , biology , electrical engineering
This paper presents development and control of a disc-typed one-wheel mobile robot, called GYROBO. Several models of the one-wheel mobile robot are designed, developed, and controlled. The current version of GYROBO is successfully balanced and controlled to follow the straight line. GYROBO has three actuators to balance and move. Two actuators are used for balancing control by virtue of gyro effect and one actuator for driving movements. Since the space is limited and weight balance is an important factor for the successful balancing control, careful mechanical design is considered. To compensate for uncertainties in robot dynamics, a neural network is added to the nonmodel-based PD-controlled system. The reference compensation technique (RCT) is used for the neural network controller to help GYROBO to improve balancing and tracking performances. Experimental studies of a self-balancing task and a line tracking task are conducted to demonstrate the control performances of GYROBO

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom