Numerical Simulation of Surge in Axial Compressor
Author(s) -
Wenhai Du,
Olivier Léonard
Publication year - 2012
Publication title -
international journal of rotating machinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.265
H-Index - 33
eISSN - 1026-7115
pISSN - 1023-621X
DOI - 10.1155/2012/164831
Subject(s) - surge , transient (computer programming) , mechanics , gas compressor , flow (mathematics) , discretization , euler equations , control volume , axial compressor , computer science , mathematics , physics , mathematical analysis , thermodynamics , meteorology , operating system
The object of this paper is to provide a reliable tool to simulate the stationary and transient operation performances in multistage axial compression systems, especially poststall behavior. An adapted version of the 1D Euler equations with additional source terms is solved by a time marching and control volume method. The equations are discretized at midspan both inside the blade rows and the nonbladed regions, along the real flow path geometry. The source terms express the blade-flow interactions and are estimated by calculating the velocity triangles for each blade row. Loss coefficient and deviation models are supplied by empirical correlations and are compared to experimental data in all flow regions. Transient simulations are carried and compared to the experimental results for several values of parameter B. The flow mechanism inside the compressor during a surge cycle is also shown
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom