Seasonally Perturbed Prey-Predator Ecological System with the Beddington-DeAngelis Functional Response
Author(s) -
Hengguo Yu,
Min Zhao
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/150359
Subject(s) - functional response , mathematics , lyapunov exponent , chaotic , bifurcation , computation , predation , ordinary differential equation , dynamical systems theory , predator , statistical physics , control theory (sociology) , ecology , differential equation , mathematical analysis , computer science , biology , physics , nonlinear system , algorithm , control (management) , quantum mechanics , artificial intelligence
On the basis of the theories and methods of ecology and ordinary differential equation, a seasonally perturbed prey-predator system with the Beddington-DeAngelis functional response is studied analytically and numerically. Mathematical theoretical works have been pursuing the investigation of uniformly persistent, which depicts the threshold expression of some critical parameters. Numerical analysis indicates that the seasonality has a strong effect on the dynamical complexity and species biomass using bifurcation diagrams and Poincaré sections. The results show that the seasonality in three different parameters can give rise to rich and complex dynamical behaviors. In addition, the largest Lyapunov exponents are computed. This computation further confirms the existence of chaotic behavior and the accuracy of numerical simulation. All these results are expected to be of use in the study of the dynamic complexity of ecosystems
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom