z-logo
open-access-imgOpen Access
Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains
Author(s) -
Martin Mann,
Rhodri Saunders,
Cameron Smith,
Rolf Backofen,
Charlotte M. Deane
Publication year - 2012
Publication title -
advances in bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.33
H-Index - 20
eISSN - 1687-8035
pISSN - 1687-8027
DOI - 10.1155/2012/148045
Subject(s) - lattice (music) , computer science , side chain , algorithm , reciprocal lattice , protein structure prediction , protein structure , physics , optics , nuclear magnetic resonance , acoustics , diffraction , polymer
Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit , a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit 's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data ( ~ 1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom