z-logo
open-access-imgOpen Access
Glomus intraradices Attenuates the Negative Effect of Low Pi Supply on Photosynthesis and Growth of Papaya Maradol Plants
Author(s) -
Nava-Gutiérrez Yolanda,
Ronald FerreraCerrato,
Jorge M. Santamaría
Publication year - 2012
Publication title -
journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 11
eISSN - 2090-0139
pISSN - 2090-0120
DOI - 10.1155/2012/129591
Subject(s) - photosynthesis , biology , symbiosis , glomus , nutrient , inoculation , phosphorus , biomass (ecology) , botany , chlorophyll a , chlorophyll , pi , plant growth , horticulture , agronomy , bacteria , chemistry , ecology , biochemistry , genetics , organic chemistry
Low inorganic phosphorus (Pi) supply limits the photosynthetic process and hence plants growth and development. Contradictory reports exist in the literature on whether mycorrhyzal association can attenuate the negative effects of low Pi supply on photosynthesis and growth. In the present paper, the effect that low Pi supply may have on photosynthesis and growth of papaya Maradol plants was evaluated in intact plants and in those inoculated with two different strains of the arbuscular mycorrhizal fungi Glomus intraradices. Plant growth was significantly reduced as the Pi supply decreased. However, inoculation with any strain of G. intraradices was able to attenuate such effect. Without Pi in the nutrient solution, the mycorrhizal plants had on average 6.1 times and 7.5 higher photosynthesis than non mycorrhizal plants. The chlorophyll fluorescence values were significantly higher in mycorrhizal than in non-mycorrhizal plants. These results could be associated to an increased ability of mycorhyzal plants to take up Pi from the substrate, as they had higher Pi content than non-mycorrhizal plants. A high correlation was found between internal Pi content and plant biomass. The lower correlation between Pi content and photosynthesis, suggests that some photosynthates could had been used to maintain the symbiosis

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom