z-logo
open-access-imgOpen Access
Statistical Portfolio Estimation under the Utility Function Depending on Exogenous Variables
Author(s) -
Kenta Hamada,
Dong Wei Ye,
Masanobu Taniguchi
Publication year - 2012
Publication title -
advances in decision sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.178
H-Index - 13
eISSN - 2090-3367
pISSN - 2090-3359
DOI - 10.1155/2012/127571
Subject(s) - variable (mathematics) , portfolio , econometrics , function (biology) , mathematics , random variable , economics , mathematical optimization , statistics , finance , mathematical analysis , evolutionary biology , biology
In the estimation of portfolios, it is natural to assume that the utility function depends on exogenous variable. From this point of view, in this paper, we develop the estimation under the utility function depending on exogenous variable. To estimate the optimal portfolio, we introduce a function of moments of the return process and cumulant between the return processes and exogenous variable, where the function means a generalized version of portfolio weight function. First, assuming that exogenous variable is a random process, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a shot noise in the frequency domain. Second, assuming that exogenous variable is nonstochastic, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a harmonic trend. We also evaluate the influence of exogenous variable on the return process numerically

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom