z-logo
open-access-imgOpen Access
Regulation of Adherens Junction Dynamics by Phosphorylation Switches
Author(s) -
Cristina Bertocchi,
Megha Vaman Rao,
Ronen ZaidelBar
Publication year - 2012
Publication title -
journal of signal transduction
Language(s) - English
Resource type - Journals
eISSN - 2090-1739
pISSN - 2090-1747
DOI - 10.1155/2012/125295
Subject(s) - adherens junction , microbiology and biotechnology , phosphorylation , cadherin , actin cytoskeleton , actin , biology , cytoskeleton , biochemistry , cell
Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning “on” or “off” their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom