Elongated Photonic Nanojet from Truncated Cylindrical Zone Plate
Author(s) -
Sergey S. Stafeev,
Victor V. Kotlyar
Publication year - 2012
Publication title -
journal of atomic molecular and optical physics
Language(s) - English
Resource type - Journals
eISSN - 1687-9236
pISSN - 1687-9228
DOI - 10.1155/2012/123872
Subject(s) - cylinder , wavelength , optics , radius , dielectric , photonics , focus (optics) , physics , materials science , chemistry , geometry , optoelectronics , mathematics , computer security , computer science
Previously (Chen et al., 2004), it was shown that dielectric cylinder can form focal spots with small diameters and long depth. This type of focal spot was called photonic nanojet. In this paper, it was shown that dielectric cylinder of radius 595 nm (1.12 of wavelength) forms near the surface a photonic nanojet with diameter equal to 0.31 of wavelength and depth of focus equal to 0.57 of wavelength. Adding truncated concentric rings with radiuses equal to radiuses of zone plate to the cylinder increases the depth of focus to 1.18 of the wavelength. The diameter and intensity of focal spot near the cylinder surface remain unchanged.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom