z-logo
open-access-imgOpen Access
An Energy-Efficient CKN Algorithm for Duty-Cycled Wireless Sensor Networks
Author(s) -
Lei Wang,
Zhuxiu Yuan,
Lei Shu,
Liang Shi,
Zhenquan Qin
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/106439
Subject(s) - computer science , wireless sensor network , energy consumption , probabilistic logic , scheduling (production processes) , latency (audio) , schedule , algorithm , computer network , mathematical optimization , mathematics , artificial intelligence , telecommunications , ecology , biology , operating system
To prolong the lifetime of a wireless sensor network, one common approach is to dynamically schedule sensors' active/sleep cycles (i.e., duty cycles) using sleep scheduling algorithms. The connected K-neighborhood (CKN) algorithm is an efficient decentralized sleep scheduling algorithm for reducing the number of awake nodes while maintaining both network connectivity and an on-demand routing latency. In this paper, we investigate the unexplored energy consumption of the CKN algorithm by building a probabilistic node sleep model, which computes the probability that a random node goes to sleep. Based on this probabilistic model, we obtain a lower epoch bound that keeps the network more energy efficient with longer lifetime when it runs the CKN algorithm than it does not. Furthermore, we propose a new sleep scheduling algorithm, namely, Energy-consumption-based CKN (ECCKN), to prolong the network lifetime. The algorithm EC-CKN, which takes the nodes' residual energy information as the parameter to decide whether a node to be active or sleep, not only can achieve the k-connected neighborhoods problem, but also can assure the k-awake neighbor nodes have more residual energy than other neighbor nodes in current epoch. Copyright 2012 Lei Wang et al.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom