z-logo
open-access-imgOpen Access
Modeling and Deployment of Model-Based Decentralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function
Author(s) -
Othman Nasri,
Hassan Shraim,
Phillippe Dague,
Olivier Héron,
Michaël L. Cartron
Publication year - 2012
Publication title -
international journal of vehicular technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.182
H-Index - 18
eISSN - 1687-5710
pISSN - 1687-5702
DOI - 10.1155/2012/103530
Subject(s) - cruise control , truck , software deployment , obstacle , fault (geology) , computer science , function (biology) , automotive engineering , real time computing , variable (mathematics) , embedded system , engineering , simulation , control (management) , operating system , artificial intelligence , mathematical analysis , mathematics , evolutionary biology , seismology , law , political science , biology , geology
The deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK) system with a decentralized architecture is presented. The SDK system is an advanced Adaptive Cruise Control (ACC) system implemented in a Renault-Volvo Trucks vehicle to increase safety by overcoming some ACC limitations. One of the main differences between this new system and the classical ACC is the choice of the safe distance. This latter is the distance between the vehicle equipped with the ACC or the SDK system and the obstacle-in-front (which may be another vehicle). It is supposed fixed in the case of the ACC, while variable in the case of the SDK. The variation of this distance depends essentially on the relative velocity between the vehicle and the obstacle-in-front. The main goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize, and to identify some faults that may occur. Our main contribution is the proposition of a decentralized approach permitting to carry out an on-line diagnosis without computing the global model and to achieve most of the work locally avoiding huge extra diagnostic information traffic between components. After a detailed description of the SDK system, this paper explains the model-based decentralized solution and its application to the embedded diagnosis of the SDK system inside Renault-Volvo Truck with five control units connected via a CAN-bus using “Hardware in the Loop” (HIL) technique. We also discuss the constraints that must be fulfilled

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom