z-logo
open-access-imgOpen Access
Stable Differences in Intrinsic Mitochondrial Membrane Potential of Tumor Cell Subpopulations Reflect Phenotypic Heterogeneity
Author(s) -
Michele Houston,
Leonard H. Augenlicht,
Barbara G. Heerdt
Publication year - 2011
Publication title -
international journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 53
eISSN - 1687-8884
pISSN - 1687-8876
DOI - 10.1155/2011/978583
Subject(s) - phenotype , primary tumor , tumor progression , population , biology , cell , mammary tumor , context (archaeology) , metastasis , tumor promotion , cell culture , cancer research , pathology , medicine , cancer , carcinogenesis , genetics , gene , breast cancer , paleontology , environmental health
Heterogeneity among cells that constitute a solid tumor is important in determining disease progression. Our previous work established that, within a population of metastatic colonic tumor cells, there are minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (ΔΨm), and that these differences in ΔΨm are linked to tumorigenic phenotype. Here we expanded this work to investigate primary mammary, as well as colonic, tumor cell lines. We show that within a primary mammary tumor cell population, and in both primary and metastatic colonic tumor cell populations, there are subpopulations of cells with significant stable variations in intrinsic ΔΨm. In each of these 3 tumor cell populations, cells with relatively higher intrinsic ΔΨm exhibit phenotypic properties consistent with promotion of tumor cell survival and expansion. However, additional properties associated with invasive potential appear in cells with higher intrinsic ΔΨm only from the metastatic colonic tumor cell line. Thus, it is likely that differences in the intrinsic ΔΨm among cells that constitute primary mammary tumor populations, as well as primary and metastatic colonic tumor populations, are markers of an acquired tumor phenotype which, within the context of the tumor, influence the probability that particular cells will contribute to disease progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom