z-logo
open-access-imgOpen Access
Charge-Carrier Transport in Thin Film Solar Cells: New Formulation
Author(s) -
J.E. Velázquez-Pérez,
Yuri Gurevich
Publication year - 2011
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2011/976063
Subject(s) - solar cell , theory of solar cells , charge (physics) , charge carrier , diffusion , open circuit voltage , limiting , diode , boundary value problem , voltage , physics , carrier lifetime , optoelectronics , materials science , solar cell efficiency , silicon , quantum mechanics , engineering , mechanical engineering
Solar cells rely on photogeneration of charge carriers in p-n junctions and their transport and subsequent recombination in the quasineutral regions. A number of basic issues concerning the physics of the operation of solar cells still remain obscure. This paper discusses some of those unsolved basic problems. In conventional solar cells, recombination of photogenerated charge carriers plays a major limiting role in the cell efficiency. High quality thin-film solar cells may overcome this limit if the minority diffusion lengths become large as compared to the cell dimensions, but, strikingly, the conventional model fails to describe the cell electric behavior under these conditions. A new formulation of the basic equations describing charge carrier transport in the cell along with a set of boundary conditions is presented. An analytical closed-form solution is obtained under a linear approximation. In the new framework given, the calculation of the open-circuit voltage of the solar cell diode does not lead to unphysical results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom