Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics
Author(s) -
Mohammad NurEAlam,
Mikhail Vasiliev,
Kamal Alameh,
V. A. Kotov
Publication year - 2011
Publication title -
advances in optical technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.124
H-Index - 25
eISSN - 1687-6407
pISSN - 1687-6393
DOI - 10.1155/2011/971267
Subject(s) - photonics , materials science , nanocrystalline material , optoelectronics , nanocomposite , bismuth , thin film , magneto , nanotechnology , optics , metallurgy , physics , mechanical engineering , engineering , rotor (electric)
Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu)3(Fe, Ga/Al)5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom