Approximation Order for Multivariate Durrmeyer Operators with Jacobi Weights
Author(s) -
Jianjun Wang,
ChanYun Yang,
Shukai Duan
Publication year - 2011
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2011/970659
Subject(s) - mathematics , simplex , multivariate statistics , bernstein polynomial , equivalence (formal languages) , smoothness , inverse , pure mathematics , order (exchange) , equivalence relation , mathematical analysis , combinatorics , statistics , geometry , finance , economics
Using the equivalence relation between K-functional and modulus of smoothness, we establish a strong direct theorem and an inverse theorem of weak type for multivariate Bernstein-Durrmeyer operators with Jacobi weights on a simplex in this paper. We also obtain a characterization for multivariate Bernstein-Durrmeyer operators with Jacobi weights on a simplex. The obtained results not only generalize the corresponding ones for Bernstein-Durrmeyer operators, but also give approximation order of Bernstein-Durrmeyer operators.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom