Prediction of Enzyme Mutant Activity Using Computational Mutagenesis and Incremental Transduction
Author(s) -
Nada Basit,
Harry Wechsler
Publication year - 2011
Publication title -
advances in bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.33
H-Index - 20
eISSN - 1687-8035
pISSN - 1687-8027
DOI - 10.1155/2011/958129
Subject(s) - computer science , random forest , machine learning , artificial intelligence , mutant , computational biology , mutagenesis , biology , biochemistry , gene
Wet laboratory mutagenesis to determine enzyme activity changes is expensive and time consuming. This paper expands on standard one-shot learning by proposing an incremental transductive method (T2bRF) for the prediction of enzyme mutant activity during mutagenesis using Delaunay tessellation and 4-body statistical potentials for representation. Incremental learning is in tune with both eScience and actual experimentation, as it accounts for cumulative annotation effects of enzyme mutant activity over time. The experimental results reported, using cross-validation, show that overall the incremental transductive method proposed, using random forest as base classifier, yields better results compared to one-shot learning methods. T2bRF is shown to yield 90% on T4 and LAC (and 86% on HIV-1). This is significantly better than state-of-the-art competing methods, whose performance yield is at 80% or less using the same datasets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom