Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties
Author(s) -
Shuxiang Mu,
Dezhen Wu,
Shengli Qi,
Zhanpeng Wu
Publication year - 2011
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2011/950832
Subject(s) - materials science , nanocomposite , photoluminescence , polyimide , zinc , raman spectroscopy , chemical engineering , nanoparticle , composite number , ion exchange , x ray photoelectron spectroscopy , layer (electronics) , composite material , ion , nanotechnology , organic chemistry , metallurgy , optoelectronics , chemistry , physics , optics , engineering
Polyimide (PI) composite films with ZnO nanoparticles embedded in the surface layer were prepared by alkali hydrolyzation following ion exchange in Zn(NO3)2 solution and thermal treatment of the zinc ion-doped PI films in air atmosphere. The effect of alkali treatment, ion exchange, and thermal treatment conditions was investigated in relation to the amount of zinc atomic loading, morphology, photoluminescence (PL), and thermal properties of the PI/ZnO composite films using ICP, XPS, FE-SEM, TEM, Raman microscope, TGA, and DSC. ZnO nanoparticles were formed slowly and dispersed uniformly in the surface-modified layers of PI films with an average diameter of 20 nm. The PL spectra of all the PI/ZnO nanocomposite films obtained at 350°C/7 h possessed a weak ultraviolet emission peak and a broad and strong visible emission band. The PI/ZnO nanocomposite films maintained the excellent thermal property of the host PI films
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom