A Simple Normal Approximation for Weibull Distribution with Application to Estimation of Upper Prediction Limit
Author(s) -
H. V. Kulkarni,
S. K. Powar
Publication year - 2011
Publication title -
journal of probability and statistics
Language(s) - English
Resource type - Journals
eISSN - 1687-9538
pISSN - 1687-952X
DOI - 10.1155/2011/863274
Subject(s) - weibull distribution , limit (mathematics) , mathematics , normal distribution , random variable , distribution (mathematics) , shape parameter , simple (philosophy) , statistics , monte carlo method , variable (mathematics) , sample size determination , mathematical optimization , mathematical analysis , philosophy , epistemology
We propose a simple close-to-normal approximation to a Weibull random variable (r.v.) and consider the problem of estimation of upper prediction limit (UPL) that includes at least l out of m future observations from a Weibull distribution at each of r locations, based on the proposed approximation and the well-known Box-Cox normal approximation. A comparative study based on Monte Carlo simulations revealed that the normal approximation-based UPLs for Weibull distribution outperform those based on the existing generalized variable (GV) approach. The normal approximation-based UPLs have markedly larger coverage probabilities than GV approach, particularly for small unknown shape parameter where the distribution is highly skewed, and for small sample sizes which are commonly encountered in industrial applications. Results are illustrated with a real dataset for practitioners
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom