z-logo
open-access-imgOpen Access
Development of a Particle Interaction Kernel Function in MPS Method for Simulating Incompressible Free Surface Flow
Author(s) -
Tony W. H. Sheu,
Chenpeng Chiao,
Chinlong Huang
Publication year - 2011
Publication title -
journal of applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.307
H-Index - 43
eISSN - 1687-0042
pISSN - 1110-757X
DOI - 10.1155/2011/793653
Subject(s) - kernel (algebra) , dirac delta function , function (biology) , mathematics , scalar (mathematics) , mathematical analysis , flow (mathematics) , kernel method , computer science , geometry , support vector machine , pure mathematics , artificial intelligence , evolutionary biology , biology
We aimed to derive a kernel function that accounts for the interaction among moving particles within the framework of particle method. To predict a computationally more accurate moving particle solution for the Navier-Stokes equations, kernel function is a key to success in the development of interaction model. Since the smoothed quantity of a scalar or a vector at a spatial location is mathematically identical to its collocated value provided that the kernel function is chosen to be the Dirac delta function, our guideline is to derive the kernel function that is closer to the delta function as much as possible. The proposed particle interaction model using the newly developed kernel function will be validated through the two investigated Navier-Stokes problems which have either the semianalytical or the benchmark solutions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom