z-logo
open-access-imgOpen Access
Growth of Photosynthetic Biofilms and Fe, Pb, Cu, and Zn Speciation in Unsaturated Columns with Calcareous Mine Tailings from Arid Zones
Author(s) -
J. Viridiana GarcíaMeza,
M. I. Contreras-Aganza,
Javier Castro-Larragoitia,
René H. Lara
Publication year - 2011
Publication title -
applied and environmental soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.431
H-Index - 23
eISSN - 1687-7675
pISSN - 1687-7667
DOI - 10.1155/2011/732984
Subject(s) - calcareous , tailings , sulfide , environmental chemistry , environmental remediation , arid , photosynthesis , environmental science , genetic algorithm , geology , chemistry , ecology , contamination , biology , paleontology , biochemistry , organic chemistry
Mine tailing remediation aims to reduce the rate of sulfide mineral oxidation. Earlier studies showed that photosynthetic biofilms may act as a physical barrier against oxygen diffusion. Currently, a long-term assay (6 months) is required to evaluate the solid phase redistribution of the Pb, Fe, Cu, and Zn originally present in historic and calcareous mine tailing samples (in our case from a semiarid region in North-Central Mexico). The presence of biofilms may provide chemical gradients and physical conditions that shift the proportion of Fe, Cu, and Zn originally associated with oxides to carbonates and organic matter/sulfide fractions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom