Asymptotic Analysis of Transverse Magnetic Multiple Scattering by the Diffraction Grating of Penetrable Cylinders at Oblique Incidence
Author(s) -
Ömer Kavaklıoğlu,
Roger H. Lang
Publication year - 2011
Publication title -
journal of applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.307
H-Index - 43
eISSN - 1687-0042
pISSN - 1110-757X
DOI - 10.1155/2011/715087
Subject(s) - scattering , asymptotic expansion , incidence (geometry) , electromagnetic radiation , plane (geometry) , grating , physics , transverse plane , oblique case , radius , mathematical analysis , optics , mathematics , geometry , linguistics , philosophy , computer security , structural engineering , computer science , engineering
We have presented a derivation of the asymptotic equations for transverse magnetic multiple scattering coefficients of an infinite grating of penetrable circular cylinders for obliquely incident plane electromagnetic waves. We have first deducted an “Ansatz” delineating the asymptotic behavior of the transverse magnetic multiple scattering coefficients associated with the most generalized condition of oblique incidence (Kavaklıoğlu, 2000) by exploiting Schlömilch series corresponding to the special circumstance that the grating spacing is much smaller than the wavelength of the incident electromagnetic radiation. The validity of the asymptotic equations for the aforementioned scattering coefficients has been verified by collating them with the Twersky's asymptotic equations at normal incidence. Besides, we have deduced the consequences that the asymptotic forms of the equations at oblique incidence acquired in this paper reduce to Twersky's asymptotic forms at normal incidence by expanding the generalized scattering coefficients at oblique incidence into an asymptotic series as a function of the ratio of the cylinder radius to the grating spacing
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom