z-logo
open-access-imgOpen Access
A New Method to Calculate the Pure Component Parameters of Any Two-Parameter Equation of State
Author(s) -
Isam H. Aljundi
Publication year - 2011
Publication title -
journal of thermodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.112
H-Index - 11
eISSN - 1687-9252
pISSN - 1687-9244
DOI - 10.1155/2011/696548
Subject(s) - thermodynamics , equation of state , cubic function , component (thermodynamics) , critical point (mathematics) , vapor pressure , mixing (physics) , simple (philosophy) , absolute deviation , mathematics , reduced properties , state (computer science) , materials science , physics , mathematical analysis , statistics , quantum mechanics , philosophy , epistemology , algorithm
Reliable equations of state are very important in the design of refrigeration cycles, since thermodynamic properties can be calculated by simple differentiation. In this paper, a new method to calculate the parameters of any two-parameter equation of state is presented. The method is based on the use of Clapeyron equation and the experimental PVT data. This method was tested on a newly developed cubic equation of state and proved to be simple and fast. Results showed orders of magnitude enhancement in prediction of the saturated vapor pressure even near the critical region. The Percent Absolute Average Deviation (%AAD) was always less than 0.1 in the studied cases. It also showed that the parameters calculated using the original equation deviate strongly from the “experimental” values as the temperature decreases below the critical point. This method can be used to redefine the temperature dependences of these parameters and develop new mixing rules for the mixtures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom