z-logo
open-access-imgOpen Access
Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge
Author(s) -
M. Mohan Raju,
R. K. Srivastava,
Dinesh C. S. Bisht,
H.C. Sharma,
Anil Kumar
Publication year - 2011
Publication title -
advances in artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 1687-7489
pISSN - 1687-7470
DOI - 10.1155/2011/686258
Subject(s) - artificial neural network , backpropagation , computer science , spring (device) , correlation coefficient , computation , algorithm , machine learning , artificial intelligence , engineering , mechanical engineering
The present study demonstrates the application of artificial neural networks (ANNs) in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (), determination coefficient, or Nash Sutcliff's efficiency (DC). Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom