z-logo
open-access-imgOpen Access
On the Perturbation of the Three-Dimensional Stokes Flow of Micropolar Fluids by a Constant Uniform Magnetic Field in a Circular Cylinder
Author(s) -
Panayiotis Vafeas,
Polycarpos K. Papadopoulos,
P. Hatzikonstantinou
Publication year - 2011
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2011/659691
Subject(s) - stokes flow , ferrofluid , magnetic field , mechanics , potential flow around a circular cylinder , reynolds number , classical mechanics , magnetic reynolds number , physics , magnetohydrodynamic drive , magnetohydrodynamics , hele shaw flow , cylinder , magnetic dipole , flow (mathematics) , mathematics , turbulence , geometry , quantum mechanics
Modern engineering technology involves the micropolar magnetohydrodynamic flow of magnetic fluids. Here, we consider a colloidal suspension of non-conductive ferromagnetic material, which consists of small spherical particles that behave as rigid magnetic dipoles, in a carrier liquid of approximately zero conductivity and low-Reynolds number properties. The interaction of a 3D constant uniform magnetic field with the three-dimensional steady creeping motion (Stokes flow) of a viscous incompressible micropolar fluid in a circular cylinder is investigated, where the magnetization of the ferrofluid has been taken into account and the magnetic Stokes partial differential equations have been presented. Our goal is to apply the proper boundary conditions, so as to obtain the flow fields in a closed analytical form via the potential representation theory, and to study several characteristics of the flow. In view of this aim, we make use of an improved new complete and unique differential representation of magnetic Stokes flow, valid for non-axisymmetric geometries, which provides the velocity and total pressure fields in terms of easy-to-find potentials. We use these results to simulate the creeping flow of a magnetic fluid inside a circular duct and to obtain the flow fields associated with this kind of flow

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom