Bayesian Network-Based High-Level Context Recognition for Mobile Context Sharing in Cyber-Physical System
Author(s) -
Han-Saem Park,
Keunhyun Oh,
Sung-Bae Cho
Publication year - 2011
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2011/650387
Subject(s) - computer science , bayesian network , context (archaeology) , variety (cybernetics) , world wide web , mobile device , mobile computing , information sharing , context awareness , human–computer interaction , cyber physical system , multimedia , artificial intelligence , computer network , paleontology , linguistics , philosophy , phone , biology , operating system
With the recent proliferation of smart phones, they become useful tools to implement high-confidence cyber-physical systems. Among many applications, context sharing systems in mobile environment attract attention with the popularization of social media. Mobile context sharing systems can share more information than web-based social network services because they can use a variety of information from mobile sensors. To share high-level contexts such as activity, emotion, and user relationship, a user had to annotate them manually in previous works. This paper proposes a mobile context sharing system that can recognize high-level contexts automatically by using Bayesian networks based on mobile logs. We have developed a ContextViewer application which consists of a phonebook and a map browser to show the feasibility of the system. Experiments of evaluating Bayesian networks and performing the SUS test confirm that the proposed system is useful.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom