z-logo
open-access-imgOpen Access
Synthesis and Characterization of ZnO Nanorods Based on a New Gel Pyrolysis Method
Author(s) -
Hassan Karami,
Elham Fakoori
Publication year - 2011
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2011/628203
Subject(s) - nanorod , zinc , materials science , polyvinyl alcohol , chemical engineering , salt (chemistry) , particle size , sol gel , solvent , inorganic chemistry , nanotechnology , organic chemistry , composite material , metallurgy , chemistry , engineering
ZnO nanorods were fabricated by a template-free gel pyrrolysis method based on polyvinyl alcohol (PVA) polymeric network. In the present method, zinc salt precursor is trapped in the homogenized gel network to control the mechanism and kinetics of zinc salt calcinations process. By controlling the gel structure and gel pyrrolysis rate, zinc salt precursor can be calcinated to zinc oxide nanorods. The morphology and particle size of the synthesized sample depend on some parameters including amount of zinc salt and PVA in the initial solution, type and composition of the solvent, type and amount of the additives, solution pH, pyrrolysis temperature, and the time of pyrrolysis, which were optimized by the “one at a time” method. The prepared zinc oxide nanorods were carefully characterized using SEM, TEM, XRD, BET, and UV-visible spectrophotometer. The obtained result showed that the present method can be used to synthesize pure and uniform zinc oxide nanorods with energy band gap 3.31 eV, effective surface area of 19 m2·g−1, average diameters of 60 nm, and length of 1000 nm

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom