Approximate Best Proximity Pairs in Metric Space
Author(s) -
S. A. M. Mohsenalhosseini,
H. Mazaheri,
M. A. Dehghan
Publication year - 2011
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2011/596971
Subject(s) - mathematics , metric space , metric (unit) , space (punctuation) , combinatorics , pure mathematics , mathematical analysis , computer science , operations management , economics , operating system
Let A and B be nonempty subsets of a metric space X and also T:A∪B→A∪B and T(A)⊆B, T(B)⊆A. We are going to consider element x∈A such that d(x,Tx)≤d(A,B)+ϵ for some ϵ>0. We call pair (A,B) an approximate best proximity pair. In this paper, definitions of approximate best proximity pair for a map and two maps, their diameters, T-minimizing a sequence are given in a metric space
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom